

HEIP! HALSTORIIM IS A PARASITE WTIHOUT A HDST!

This could be the last issue of our newsletter as, once again, we are without a sponsor. This issue is being printed and mailed through the generosity of the INISORMIL office but this is the last issue they can support. Can any one help?

STRIGA SPECIES IN EIHIOPIA

On a recent visit to Ethiopia it was confirmed that Striga hermonthica is continuing to spread and is now found up to an elevation of 2300 M in some areas. Occurrences on some new farms at low altitude are believed to have arisen from the abundant natural infestation in the rative savamah, apparently parasitic mainly of species on Setaria.

The most striking species was S. 1atericea which is known from native vegetation in a rumber of districts in Ethiopia and other parts of East Africa but occurs as a persistent localized problem on the Meta Hare Sugar Corporation fam in the Awash valley. It is as tall as S. henmonthica but has broader leaves and a dense covering of fine hairs and spikes of brick-red flowers up to 2 cm long.

Close examination of this poutation showed that it is erennial with a system of rhizomes several ma thick from
which adventitious buds produce aerial shoots. The aerial parts also have a peremial rabit with new shoots arising from th? lower nodes after much of the stem has matured and died. The parasite is apparently slow to establish and is not nomally noticed in the first year after planting sugar cane, but is seen as spreading patches in ratoans. These patches grow up to several meters across and persist for many years and even re-appear in the same place after the ratoon is destroyed and the crop replanted. New infestations are not often noted and it appears that it spreads bainly by vegetative reproduction. Very little was being set due to heavy infestation by a pollen eating larva.
C Parker

WHAT EVER HAPPENED TO THE INEEX OF PARASITIC SEED FLANT WORKERS?

We still plan to produce such an index but production has been delayed due to a change in the way HALSIORIMM is prepared and, at present, a lack of a sponsor! It is stffl not too late to send your forms to L J Musselman.

A TUBEROUS HALSIURIIM OF THONNINGIA SANGUINEA (BALAMOPTRRACEAE) GRONING ON HEVEA BRASILIENSTS.

In 1985 a tuber 8 cm in dianeter was sent to Kew fron Cameroin where it has collected by if P G S Hall of the Natural Resources

Department, Commarwealth Develop ment Corporation. It was sai that Thonningia sanguinee wa: conspicuous as red rosettes a the ground in a rubber plantation. As far as we know sucd tubers have never been reparter from this species and exarination of herbarium material at Re provided nothing like it Although there was no reeson to doubt its identity as photographs of the flowers were provided, \boldsymbol{n} inflorescence attached \mathbf{x} confirmation was sought bj anatamical study. The woody root to which the tuber was attachex proved to be rubber Heyes brasiliensis) while the tuber consists of parenchymators ground tissue with islands of vascular tissue pursuing ar irregular course and same sclereids. This is anatomically similar to the only reference slide at Kes of annther uenber of the same family, Lanpsdorffie papuana from New Grinea, which is good evidence that the tuber consists of Thamingia rather than Hevea tissue.

It would be interesting to know whether such a tuier is frequent and whether or not it occurs on hast plants other the rubber. According to the Anatomy of the Dicots, tuberous rhizomes in the Balanophoracese range ir size from a stall nt to a hmer head. Striga gennerioides alx forms a tuber-like structure of some size but only when the host is an arborescent species of Euphorbia, which like LL, is, is a latex producire menber of the Euphorbiaceae. Is
there an analagous function in these two parasites from totally urrelated families each producing tuberous haustoria? (See figure on page 4).

F N Hepper and P Casson, Royal Botanic Cardens, Kew.

FOURIH SMPPOSIIM ON PARASITTC WEEDS, SLMER 1987.

Plans are proceeding for our next IPSPRG meeting which will be held in Germany during the sumer of 1987 at the Philips Liniversity in Marburg.

The actual date of the meting has not yet been decided but will be either before or after the Botanical Congress to be held in Berlin 24 July to 1 August 1987.

MEDICINAL LSES OF A MEMBER OF THE BALANOFHDRACEAE IN SOMALTA

During a recent collecting trip in the Middle Juba Region of Somalia, we encountered a preparation in the local markets sold as a cure for diarriea and menstrual disorders called in Somali, dinsi. Because of its resemblance to tartous (a member of the Hydnoraceas used in other parts of Africa as a medicine for the same ailments), we attempted to locate the source of the dinsi. After some consultation with local people we found that what bas boing sold was the dried and broken pieces of a member of the Balanophoraceae. The plant has not yet be identified but it does not reserible plans of the genus Balanophora and could be a species of Chlamydophytum or a related gerus. Further work is under way to determine the plant and other uses as well as sane information
on the chemical makeup of the medicine.

Cistanche is also known as dinsi in the same area and we were led by a namad to a stand of Cistanche and told it was dinsi. However, the material being sold in the market definitely was not Cistanche.

Aweys Yusef and L J Musselman

EFFECT OF FERTILITER ON STRIGA CONT IN WHEAT

A experiment on the long range effect of continuous cropping and manuring on Jowar wheat rotation is in progress at the Agricultural Research Station of the Lniversity of Agricultural Sciences at Sirguppa in the Tunga Bradra Project area. The soil is a vertisol and the experinent has been in progress since 1977. The treatments consist of all combinations of three levels of $\mathrm{N}(40,80$, and $120 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$), three levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ (0,40 , and $80 \mathrm{~kg} / \mathrm{ha}$) and two levels of $\mathrm{K}_{2} 0$ (0 and $40 \mathrm{~kg} / \mathrm{ha}$). The experiment is laid out in a 32×2 partially unfounded design with four replications.

The crop of Hy, jowar-CSH-5 wes sown on 8-7-1985 with a spacing of 40 cm between rows and 10 cm between plants within a row. Counts of Striga asiatica were recorded treatrent-wise at 70 days after sowing. The data on weed counts and visual observation indicates that the weed population is low in the plots receiving higher doses of N. The effect of $\mathrm{P}_{2} \mathrm{O}_{5}$ levels and $\mathrm{K}_{2} \mathrm{O}$ level did not show any influence on the Striga count. The data indicates that the intensity of Striga is greater in N poor soils.

M M Hosmani, V Jagannnath, K M S Sharma, University of

Agricultural Sciences, Shimo India.

LITERATURE

The underground sorcery of with weed. Discovery. Decemt 1985. (This is a pppular acca of a very sigrificant and as: unpublished discovery of t rechemical radar" of Stri asiatica. J L Riopel and Lynn have found that the parasi sends a message to the host whi in turn tells the parasite produce a haustorium).

Yatskievych, G, Zavada, 1984. Pollen morphology 1 Lennoaceae. Pollen et Spor 26: 19-30. (Pollen structux supports the concept that th: North Anerican family of holopas asites consists of only fa species.)

Iranshar, M. 1983. New recorc of cuscuta (Cuscrtacese) fro Iran. Iranian Journal of Botar 2(1): 9-12.
(Not surprisingly, C. campes tris is now known from Iran $\overline{\text { Also }}$ noted for the first tim is C. lehmanniana. There ar figures of the species and. map of their distribution.)

International Institute o: Agriculture. 1985. IIT. Research Highlights for 1984 (Two articles on Striga, on describing a survey of species a maize in Nigeria and suggesting that S. aspera is much more important than previousls thought and also that \underline{S} forbesi and a yellow flowered form of S asiatica are of more local importance. Another species, perhaps S. passargei, has also been noted on maize. A secon article describes the discover

8resistance to S. gesnerioides the cowpea variety \%vita-2 and the transfer of the resistance into varieties with insect resistance.).

Vasudeva Rao, M J . 1485. Techniques for screening sorghums for resistance to Striga. Information Bulletin 20, ICRISAT. (An extremely well-illustrated and clear guide to a range of techniques for the study of Striga from laboratory to field which will be useful not only to the researcher on crop resistance but to those working on other approaches also. This forms a chapter in the forthcoming volume Striga Biology and control to be published by CRC Press in 1986.)

Kuijt, J, Bray, D, Olson, R. 1985. Anatomy and ultrastructure of the endophytic system f Pilostyles thurberi (Rafflestaceae). Canadian Journal of Botany 63: 1231-1240. (Three cell types are described from the cortical strands one of which is considered to be a sieve element although vestigal.)

Nassib, A M , Hussein, A H A, El Rayes, F M. 1985. Effect of variety, chemical control, sowing date and tillage on Orobanche spp infestation and faba bean yield. Fabis Newsletter 10:11-15. (A useful sumary of a wide ranging series of studies on 1 crenata in Egypt.)

Yatskievych, G. 1985. Notes on the biology of the Lennoacme. Cactus and Succulent Journal (US.) 57: 73-79. (A well illustrated, in color, and interesting account of this fascinating family.)

Scrophulariaceae Research Newletter 1(2). (This my be of interest to HALSTORIM readers who are work with parasitic Scrophulariacese. Mbst of the newsletter is concerned with non-parasitic species but there is also a helpful review of literature which covers the entire family. You can obtain the newsletter by writing: K Barringer, Field Museum of Natural History, Chicago, I1linois 60605.)

Olson, A R, Ruijut, J. 1985. Sieve elements in the morphologically reduced mistletoe Viscum minimum Harvey (Viscaceae). American Jourral of Botany 72: 1220-1224. (This minature mistletoe with shoots only 2-3 mim long on Euphorbia horinda is shown to have functional phloem elements, unlike some other reduced mistletoe species.)

Clay, R, Dement, D, Rejnanek, M 1985. Experimental evidence for host races in mistletoe (Phoradendron tomentosum). American Journal of Botany 72: 1225-1231. (Parasite seed collected from Celtis, Ulmis, and Prosopis were grown on all three hosts. Growth was best on the host from wrich the seed was collected, suggesting some degree of host race development.)

Enleringer, J R, Schulze, E D. 1985. Mineral concentration in an autoparasitic Phoradendron californicum growing on a parasitic P. californicum and its host Cercidium floridum. American Journal of Botany 72: 569-571. (Concentrations of a range of mineral elements were least in the host and highest in the hyperparasite.

It is suggested this is due tc higher transpiration rates in the parasite.)

Sahai, A, Shivanna, K R. 1985. Seed germination and seedling growth in Sopubia delphinifolia-a hemi-root parasite: germination requirements and :requirements for sedling growth and the role of cotyledons. Anrals of Botany 55: 775-783 and 785-791. (Light is shown to be essential for germination, which is also greatly increased
chilling (4 C) for a few days or by ethylene. Continued growth in the absence of a host requires a carbohydrate source or high light intensity.)

Alosi, M C, Calvin, C L 1985. The ultrastructure of dwarf mistletoe (Arceuthobium spp.) sinker cells in the region of the host secondary vasculature. Canadian Journal of Botany 63: 889-902. (Sinker cells are similar in three different species. Xylem is not continuous through the sinker cells but apoplastic contimuity is provided by fused cellulosic cell walls.)

Musselman, L J. 1985. Bean stranglers! Explorer 27(3): 23-25. (A popular illustrated account of the gemus Orobanche.)

Musselman, L J. 1985. Fertility and floral patterns in same species of Striga (Scrophulariaceae). National Geographic Society Research Reports 20: 487-491.

HAUSTORIUM is edited by L J Musselman, Deptment of Biological Sciences, Old Dominion University, Norfolk, Virginia 23508 USA and by C Parker, Tropical Weeds, Weed Research Organization, Begbroke Hill, Yarnton, Oxford 0X5 IPF UK. Send material for publication in HAUSTORIUM as well as requests for copies to either editor.
This issue of HAUSTORIUM was reproduced and mailed to you by the Sorghum/Millet Coll aborative Research Program, INTSORMIL. This collaborative research program is supported by a grant from the United States Agency for Internation Development, Contract Number DAN-1254-G-SS-5065-00.

